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The usefulness of the method of quadrature by differentiation for solving eigenvalue 
problems in hydrodynamic stability is demonstrated. A numerical example, the Taylor 
problem, is presented in order to show the efficacy of the method and provide a basis 
of comparison with other approximate methods (e.g. the Gale&in method). 

The results were found to be in good agreement with experimental data and it was 
demonstrated that the method of quadrature by differentiation in comparison with 
other analytical methods requires no trial and error, no extensive mathematical in- 
vestigation, and no lengthy computer computations. 

1. INTR~DuOTI~N 

The purpose of this paper is to demonstrate the usefulness of the infrequently 
used method of quadrature by differentiation [l] for solving eigenvalue problems 
in hydrodynamic stability. A numerical example is chosen in order to show the 
ease of application of the method. The method, however, is applicable to much 
more complicated problems. 

It is useful to show the application of the method to an eigenvalue problem 
in hydrodynamic stability that has already been soIved by other methods. In this 
way, a basis of comparison is established between quadrature by differentiation 
and other approximate methods (the Galerkin method in particular). 

It will be demonstrated that the method consists of a number of straightforward 

* Presently at Princeton University, Princeton, NJ, Department of Aerospace and Mechanical 
Sciences. 
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steps demanding no trial functions, no trial and error, and no hindsight. On the 
other hand, the Galerkin method, a subset of the method of weighted residuals, 
requires a choice of trial functions and thus can require a considerable amount of 
physical insight and trial and error (for example, see [2]). However, the real 
advantage of the method lies in its applicability to nonlinear, as well as linear 
differential equations, and nonself-adjoint as well as self-adjoint differential 
equations. 

2. PHYSICAL PROBLEM 

The problem to be examined is that of the stability of viscous, incompressible 
flow between concentric rotating cylinders, i.e., the Taylor problem. The cylinders 
are assumed to be infinitely long and rotate in opposite directi0ns.l The inner 
and outer radii are given by R, and R, , respectively. The corresponding angular 
velocities are given by Sz, and Q, . In this illustrative problem, the “small gap” 
case [(R2 - R,) < (R, + R&2] will be considered. 

The equations of motion yield the stationary solution for the velocity in the 
transverse direction 

V = Ar + B/r (4 < r < R2), (1) 

where 

A = J&(1 - J-~z’~R~~/~~R~~)/(~ - R2Z/R,2) 

and 

B = Q,R12(1 - Ji$/sZ,)/( 1 - R12/R,2). 

Following the standard analysis, a disturbance is superimposed on the basic 
flow and the resultant pressure and velocities are substituted into the Navier-Stokes 
equations. After noting that the basic flow itself satisfies these equations, a set of 
nonlinear partial differential equations for the disturbance quantities is obtained. 
This set of equations is linearized in the disturbances by neglecting terms higher 
than the first order in the disturbances and their derivatives. The justification 
for the linear analysis lies in the fact that it has predicted results which are in 
excellent agreement with experimental evidence in numerous cases. 

The linearized partial differential equations are solved using a normal mode 
analysis. This analysis uses disturbance functions with separated variables having 

1 The case in which the cylinders rotate in opposite directions generally presents more formidable 
mathematical and computational problems. 
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rotational symmetry and periodicity in the axial direction. The resulting ordinary 
differential equation is as follows. 

(DD* - Ay v = (4‘4P/vZ)(A + B/r2) v, (2) 

where D = dldr, and D* = d/dr + l/r. Here v = v(r) is the component of the 
disturbance velocity in the radial direction, v is the kinematic viscosity, and 
277/X is the wavelength of the disturbance in the axial direction. The boundary 
conditions are 

v = 0, 
(DD” - h2) v = 0, 

1 

at r = R, and r = R, . 
D*(DD* - h2) v = 0, 

If the gap is small compared with the mean of the two radii, then the above 
equation reduces to 

(D2 - X2)” v = (4AX2/v2)(A + B/r2) v, 

with boundary conditions, 

(3) 

v = 0, 
(D2 - h2) v = 0, at r = R, and r = R2. 

D(D2 - x2) v = 0, i 

With the change in variable, (following [2]) 

dl = R, - R, , 

R, is defined as r where V(r) = 0, 

r = 4, -t 5, 

x = (4 + EM > 
a = hd,, 

S = 8A2d15/v2R,. 

Equation (3) becomes 

(D2 - a2)3 v(x) = Sa2(x - 1) v(x), (4) 

with boundary conditions, 

v = 0, 
(D2 - a”) v(x) = 0, at x = 0 and x = d/d, , 

D(D2 - a”) v(x) = 0, i 
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where d = R, - R, and D = d/dx and the term V/r has been approximated by a 
straight line profile which has the slope of V/r at R, . 

This represents the complete formulation of the eigenvalue problem to be 
considered in this paper. The problem is to determine the values of “S” and “a” 
for which the differential equation has a solution. The values of “S” and “a” 
represent physically (i.e., are related to) the critical Reynolds (or Taylor) number 
at which the flow becomes unstable and the axial spacing of the disturbances, 
respectively. 

This problem, as is well known, was first studied both experimentally and 
theoretically by Taylor [3]. Taylor’s theoretical solution employed the expansion 
of the disturbance velocities in a series of orthonormal functions made up of 
first-order Bessel functions. His results were in excellent agreement with experi- 
mental evidence and this work represented the first successful application of linear 
hydrodynamic stability theory. At a later date, theoretical and experimental 
results further confirmed his conclusions. 

Before Taylor’s pioneering work on the stability of the flow between long 
concentric rotating cylinders, Couette [4], Mallock [5, 61 and Rayleigh [7] had 
investigated this circular flow. Couette and Mallock’s work involved experimentally 
determining the drag on one cylinder while the other rotated. Rayleigh investigated 
the stability of inviscid Couette flow and established his now famous stability 
criterion, that the necessary and sufficient condition for stability with respect 
to rotationally symmetric disturbances is that (d/dr)(r2Q2 > 0. Here Q(r) is the 
angular velocity of rotation of the fluid at a radius r. Later Synge [8] considered 
the viscous case and has shown that Rayleigh’s criteria is a sufficient condition 
for stability but not a necessary one for a viscous circular flow. 

Since Taylor’s work, many other researchers have theoretically investigated 
the Taylor problem, including Chandrasekhar [9, lo], Kirchgassner [I I], 
Chandrasekhar and Elbert [12], Duty and Reid [13], Harris and Reid [ 143, 
Sparrow, Munro and Jonsson [I 51, Meksyn [16, 17, 181, Walowit, Tsao and 
DiPrima [19], DiPrima [2], Yu and Sun [20], Roberts [21], and Meyer [22], 
using a variety of methods including expansion procedures, integral methods, 
solution of adjoint systems of equations, asymptotic expansions, the Galerkin 
method, and numerical methods. However, none of these methods enjoy the ease 
of application of the method of quadrature by differentiation. 

3. ANALYSIS 

The quadrature formulas ([l]) enable one to approximate the integral of a 
function,f(x), over a given interval by simply utilizing the values of the function 
and its derivatives at each endpoint. For three-term quadrature, the expression 
would be 
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s .‘f (4 dx = ; [f@> +fu>l +A [f’(O) -f’U>l + & [f”(O) +fyl)]. (5) 

For the problem under consideration, three-term quadrature proved to be adequate 
for values of “5”’ in the range of greatest change and was used throughout. In 
general, the number of terms retained in the quadrature formulas is determined 
by the desired degree of accuracy of the approximation. 

In order to apply the method of quadrature by differentiation to the problem 
at hand, the differential equation was first normalized to the interval [0, l] by 
utilizing the change of variable x = d/d, y. The differential equation becomes 

($)” u”‘(y) - 3a2 (5)” v’“(y) + 3a4 ($)” v”(y) 

+ [su2 (1 - f y) - a6] t;(y) = 0, (6) 

with boundary conditions, 
v = 0, 

v”-a2(d/d,)2v=0, aty=Oandy= 1. 
V 

11, - a2(d/dl)2 v’ = 0, 

At the endpoint y = 0, v is represented by the expansion 

v = b, + b,y i- bzy2 + b3P + ‘... (7) 

At y = 1, v is represented by the expansion 

v = c, + C1(y - 1) + C,( y - 1)2 + C,( y - 1)3 + . . . . (8) 

Substitution of these expansions into the differential equation and application 
of the boundary conditions yields relationships among the coefficients bi and 
relationships among the coefficients Ci . These relationships, obtained by satisfying 
the differential equation and the boundary conditions, are as follows. 

b, = 0, c, = 0, 

b, = 0, c, = 0, 

b, = (l/6) a2f12b, , C, = (l/6) u”/l”C, , 

be = (l/30) K&4, G = (l/30) w4 9 

b 
7 

= 12OK,b, - (&a2/32 + KS) b, c = 12OfhG - w2u2g2 + K3 - K4) Cl 

5040 > 7 5040 9 

b 
8 

= 12K12b4 - 12&b, + K&l 
c 8 

12K12C4 + 
20160 9 

= - 12f&c4 K4G 20160 9 
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where Kl = 3a2P2, K2 = 3a4p4, K3 = Sa2p6 - a6p6, K4 = Sa2b7, and /3 = d/d1 . 
In addition, the three-term quadrature formulas for u’(v), u”(u), uIv(y), and 
am’ were then invoked and equations relating the hi’s to the C’s were obtained. 
These results (which utilize the fact that b, = C,, = b, = C, = 0) are as follows: 

b, + @,/10) = -CC, + (G/W) 
G - b, = (3/W, - G> + (VW, + C4>, 

G - bs = W, + C4) + W5 - Cd + (be + C,>, 
12(C, - b5) = 360(b, + C,) + 504(b, - C,) + 336(b, + C,). 

After some algebraic manipulation, the equations may be reduced to two equations 
for (b, + C,)/b, . By eliminating this expression, the following characteristic 
equation 

1200 + 160a2 t---f&)’ - f [Sa2 (-$)” - as (-$-)6] 

+ &Sa2 (%)’ + 6a4 (%)” = 0 (9) 

was obtained. Therefore, 

s = f a6 (--$’ + 6a4 (%)’ + 160a2 (-$)2 + 1200 

1 d6 1 d7 --2_ ----2- 
( 1 ( 1 

(10) 

5 dl 10 dl 

The values of “a” for which “S” is a minimum are desired. Setting dS/da = 0 
and solving for “a” (with d2S/da2 > 0) yields 

ad/d, = 3.284. 

Thus for given values of the parameter 4/d, the corresponding values of “S” 
and “a” are determined once and for all. Therefore, 

S = 3592(d#j5/[2(d,/d) - l] (11) 

and a = 3.284(dJd). These results along with the analytical results of DiPrima [2] 
and the experimental results of Taylor [3] are displayed in Fig. 1. The characteristic 
stability curves of “S” versus “a” are displayed in Fig. 2. 

The method gives quite accurate values of “S” in the range of greatest change 
(and greatest interest), 0.6 < d,/d < 1.0, as shown in Fig. 1. For the range of 
d,/d < .6, in which “S” is expected to be fairly constant, the results indicated that 
three-term quadrature was not adequate. 
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The physical grounds for expecting that “S” would be fairly constant in the 
region 0 < d,/d < .6 is closely tied to the location of R, . Below values of d,/d = 0.5, 
R, is closer to the inner cylinder. If R, is close to the inner cylinder, the position 
of the outer cylinder would have less effect on the instability because the centrifugal 

/ 1 I I , I I , , / 

o EXPERIMENTAL RESULTS (3) FOR R,=380.R2=4.035 CM 
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FIG. 1. Comparison between the results of the method of quadrature by differentiation and the 
experimental results of Taylor [3] and the theoretical predictions of DiPrima [2]. 

a 

FIG. 2. Characteristic stability curves obtained by the method of quadrature by differentiation. 

force tends to cause instability in the region R, < r < R, while tending to stabilize 
the flow in the region R, -=c I -=c R2. With this in mind, DiPrima [2] restated 
the eigenvalue problem for d,/d -+ 0 by letting R2 ---f co. This requires that his 
eigenfunctions satisfy only the three boundary conditions at x = 0 and that they 
decay exponentially as r + co. His solution for this case is also shown in Fig. 1. 
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4. SUMMARY AND CONCLUSION 

As noted earlier, the case in which the cylinders rotate in opposite directions 
generally presents more formidable mathematical and computational problems. 
Taylor’s original analytical solution still applied for this case, however, the 
calculations become much more tedious. DiPrima’s solution (shown as X in 
Fig. l), while it enjoys the relative simplicity of the Galerkin method, still requires 
an extensive search for suitable trial functions. Meksyn’s asymptotic representations 
for this case are in good agreement with experimental results although his analysis 
requires a rather extensive mathematical investigation. The results of the method of 
quadrature by differentiation presented herein compare favorably with experi- 
mental results as shown in Fig. 1. The method, in comparison with the analytical 
results of DiPrima and Meksyn, requires no trial and error, no lengthy mathema- 
tical or computer computations, and no hindsight. On the other hand, the Galerkin 
method requires a considerable amount of trial and error in the selection of an 
adequate trial function (for different values of d,/d, it would be expedient to use 
different trial functions) and more algebraic and computer computations. In 
addition, the method used in this paper is applicable to more complicated problems 
involving nonlinear and nonself-adjoint systems. 

Difficulties in obtaining accurate experimental data and the possibility of an 
error in the data for R, = 3.80 were noted in [2, 171. The question arose due to 
the good agreement of Meksyn’s results in all cases but R, = 3.80. The problem 
in his analytical results occurs because of the sensitivity of the results to the 
accuracy of the measurement of R, when the distance between the cylinders is 
small and --w (W = Q,/Q,) is large. The suggested possibility of an error in the 
experimental data is in the direction of higher values of “s” at given d,/d which 
would increase the general agreement between the analytical solution presented 
herein and the experimental results. 
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